1 Conditional Probability

1.1 Concepts

1. The probability of an event A given that we know an event B occurred is denoted as $P(A \mid B)$ and the formula is

$$
P(A \mid B):=\frac{P(A \cap B)}{P(B)} .
$$

Sometimes, we do not know $P(B)$ and we have to rewrite it as

$$
P(B)=P(B \cap A)+P(B \cap \bar{A})=P(B \mid A) P(A)+P(B \mid \bar{A}) P(\bar{A})
$$

1.2 Examples

2. I flip a fair coin 12 times. What is the probability that exactly 10 heads appear given that at least two heads appeared?

1.3 Problems

3. True False If $A \subset B$, then $P(A \mid B)=P(A) / P(B)$.
4. True False If $P(A \mid B)=P(B \mid A)$, then $P(A)=P(B)$.
5. Suppose that 80% of students have taken Calculus and of those, only 20% become math graduate students. Suppose that 30% of all students become math graduate students. Let C be the set of students who have taken Calculus and let G be the set of students who become math graduate students. Represent $80 \%, 20 \%, 30 \%$ in terms of probabilities (e.g. $P(A)$ or $P(A \mid B)$).
6. Using the previous problem, what is the probability that someone has not taken calculus and is a math graduate student? What is the probability that a math graduate student has not taken calculus?
7. Out of 330 male students and 270 female students in $10 \mathrm{~B}, 210$ of the men and 180 of the women took 10A with Zvezda last semester. What is the probability that a randomly person is a female given that they took 10A with Zvezda?
8. There are two boxes. One has 10 red balls and no white balls and one has 5 red and 5 white balls. I randomly pick a box then randomly pick out a ball. What is the probability I pick out a red ball?
9. What is the probability that I have a full house (one triple, one pair) in my 5 card hand if I know that I have a triple (but not 4 of a kind)?

2 Review

10. How many ways can you rearrange the letters in BERKELEY?
11. There are 72 students trying to get into 3 of my sections. There are $27,20,25$ openings respectively. How many ways are there for these students to enroll?
12. How many ways can I put 20 Tootsie rolls into 5 goodie bags so that each goodie bag has at least 2 Tootsie roll?
13. Show that when you place 9 coins on an 8×10 boards, at least two coins must be on the same row.
14. How many different three-letter initials contain A ?
15. How many license plates with 3 digits followed by 3 letters do not contain the both the number 0 and the letter O (it could have an O or a 0 but not both).
16. Prove that $\binom{n-1}{r-1}+\binom{n-1}{r}=\binom{n}{r}$ in two different ways.
17. Prove that $\sum_{k=0}^{n} 5^{k}\binom{n}{k}=5^{0}\binom{n}{0}+5^{1}\binom{n}{1}+\cdots+5^{n}\binom{n}{n}=6^{n}$.
18. How many ways can I split up 30 distinguishable students into 6 groups each of size 5 ?
19. Find a formula for $1+2+4+\cdots+2^{n}$ and prove it.
